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IX. Memoir on the Theory of the Partitions of Numbers.—Part VI. Partitions
i Two-dimensional Space, to which is added an Adumbration of the
Theory of the Partitions in Three-dimensional Space.

By Major P. A. MacManrox, R.A4., D.Sc., LL.D., F.R.S.
Received June 13,—Read June 29, 1911,

Introduction.

I resuMme the subject of Part V.* of this Memoir by inquiring further into the
generating function of the partitions of a number when the parts are placed at the
nodes of an incomplete lattice, viz., of a lattice which is regular but made up of
unequal rows. Such a lattice is the graph of the line partition of a number. In
Part V. I arrived at the expression of the generating function in respect of a two-
row lattice when the past magnitude is unrestricted. This was given in Art. 16 in
the form

oy b) = ———(ra=b)
GF (; a,b) 1) (@) ... a+1). 1) (2) ... (b)

I remind the reader that the determination of the generating function, when the
part magnitude is unrestricted, depends upon the determination of the associated
lattice function (see Art. 5, loc. cit.). This function is assumed to be the product of
an expreSsion of known form and of another function which I termed the inner lattice
function (see Art. 10, loc. cit.), and it is on the form of this function that the interest
of the investigation in large measure depends. All that is known about it & priort
is its numerical value when « is put equal to unity (Art. 10, loc. cit.). The lattice
function was also exhibited as a sum of sub-lattice functions, and it was shown that
the generating function, when the part magnitude is restricted, may be expressed as
a linear function of them. These sub-lattice functions are intrinsically interesting,
but it will be shown in what follows that they are not of vital importance to the
investigation. In fact, the difficulty of constructing them has been turned by the

* ¢ Phil. Trans.,” A, vol. 211, 1911.
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346 MAJOR P. A. MacMAHON: MEMOIR ON THE

formatfon and solution of certain functional equations which lead in the first place
to the required generating functions, and in the second place to an exhibition of the
forms of the sub-lattice functions. To previous definitions I here add the definition
of the inner lattice function when there is a restriction upon the part magnitude, and
it will be shown that the generating, lattice, and inner lattice functions satisfy
certain functional equations both when there is not and when there is a restriction
upon the part magnitude.

There are two methods of investigation available. We may commence with a
study of the Greek-letter successions (Art. 6, et seq., loc. cit.) from which the lattice
functions are derived, and having obtained the functional equations which they
satisfy, proceed thence to those satisfied by the generating and inner lattice functions ;
or we may reverse the process, and, by a prior determination of the equations apper-
taining to the generating functions, arrive at those satisfied by the lattice and inner
lattice functions. '

Both methods have been of service.

The results, herein achieved, are complete so far as the lattice of unequal rows and
the particular question under consideration are concerned. They are elegant and
algebraically interesting. In proof of this, it will suffice to say that the generating
function is unaltered when the lattice is changed into its conjugate. The subject
thus swarms with algebraical relations which are established intuitively.

Other results are obtained of a more general and extensive character which mark
out the path of further investigation.

Art. 1. T recall that for the lattice of two unequal rows, containing @, b nodes
respectively, the established results are

Inner lattice function = IL (o ; @, b) = 1+a""! (_a,_—_l)l;

(1)

i lon = w ; a = (1) (2)( +b) b+l —b .
Lattice functio L(o;a,b) DIOMCESY ‘3'(1) M0 {1 n a.(l) } :
1+wb+1(a_b)

(1) ,
@) (3) ... @a+1). (1) (2) ... (b)

We have yet to determine IL(; a,b), L (I; a,b), GF (I; a,b), where an inner
lattice function, for a restricted part magnitude, is defined by the relation

Generating function = GF (o ; a,b) =

Ly ..y @)

.(l4a,4+n—-2)...... .
= (1)(2)-..(28) (n)...(a;+n—1). (n—1)...(a;+n—2)...... (1)(::) IL{; o,

ey ).
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THEORY OF THE PARTITIONS OF NUMBERS. 347

The Functional Equations.

Art. 2. Tt is convenient to begin by establishing the functional equations satisfied
by the generating functions.

Suppose the lattice to have three unequal rows of a, b, ¢ nodes respectively, and
let the part magnitude be restricted by the number Z,

A
.
C
.

Subject to the parts being in descending order of magnitude in each row and in each
column, in every partition each node is either occupied by zero (that is, is unoccupied)
or by a number greater than zero and not greater than /. In certain partitions every
node is occupied ; such partitions may be constructed by

(1) Placing a unit at each node,
(ii) Superposing every partition enumerated by GF (I-1; «a, b, c).

Hence these special, full-based partitions are clearly enumerated by

" GF (I-1; a, b, ¢).

-

Similarly those partitions which are full-based upon a contasned lattice specified by
the line partition («'0'c’) are enumerated by

" GE (I-1; o/, V, )5
and we are led to the relation
GF(; a,b,c) = 3" GF (I-1; o, V, ¢),

where the summation is in regard to every lattice, specified by (¢/b'¢), which is
contained in the lattice specified by (abe).

Art. 3. If from the partitions enumerated by GI (/; a, b, ¢) we subtract those
enumerated by a*"*GF (I—1; a,b,c), we have remaining, in the case of three
unequal rows, partitions which ¢nclude those enumerated by each of the three

generating functions
GF(;a—1,b,¢), GF(l;a,b-1,¢), GF( ;. a, b, c—1);
and which, by a well-known principle of the combinatory analysis, are enumerated by
GF(;a—1,0,¢)+GF(l; a,b—1,¢)+GEF (l; , b, ¢c—1)
—GF(;a—1,0-1,¢)-GF({; a—1,b,¢=1)=GF (l; a,b—~1,¢—1)

+GF (Z; a—1,b—1, c—l‘).
2 Y 2
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348 MAJOR P. A. MAcMAHON: MEMOIR ON THE

Hence the functional equation
GF(l; a, b, c) —a"*"*GF (I—-1; a, b, ¢)
=QF(;a—-1,b,¢)+GF (l; a,b—1,¢)+GF([; a, b, c—1)
—GF(l;a—-1,0=1,¢)=GF (l; a—1,b,¢~1)=GF (I; a, b—1, ¢c—1)
+GF(l; a—1,b—1, c—1).

In the general case of # unequal rows we have the theorem for GF (1; a, as, ..., a,);

for if’ p, be a symbol such that
p.GF (1 a,, a,, o a,) =GF(l; a,ay ..., 0,1, ..., a,),
it is readily seen that
(1=p) 1=ps) ... (1=pa) GF (15 a4, @, .., @) = 2GF (I=15 ay, @y, ..., @,).

This equation is, at first sight, only true when there are no equalities between
the numbers a,, @y, ..., @,; but in the sequel, when an algebraic expression of
GF (I; ay, as, ..., @,) has been found, it will be seen to be true universally as an
algebraical identity.

Art. 4. However, the formula may be modified, in the direction of simplification,
when the rows are not all unequal. v

For a given lattice we require to know how many nodes may be singly detached
and yet leave a contained lattice. Thus in the three-row lattice illustrated above it
is clear, the rows presenting no equalities, that we may detach singly either of the
nodes lettered A, B, C; but in the case now given

A a nodes
b nodes

. b nodes,

it is seen that we can detach either A or C only, so that the resulting functional
equation is

GF (15 @, b, b) —a"**GF (I—1; a, b, )
= GF (I;a—1,0,b)+GF (I; a, b, b—1)~GF (I; a—1,b, b—1),

which is to be compared with the equation appertaining to a lattice of two unequal

rows

GF (15 a,0)—a*"GF (I—1;a,b) = GF (1; a—1,0) +GF (I; 0, b—1)=GF (I; a—1, b—1).
Similarly we derive the equations

GF(; a, a, b) —x*"*GF (I-1; a, a, b)
=GF(;a0-1,0)+GF(; a,a,0-1)-GF (/; o,a—1, b—1),

GF(l; a,a,a)—2*GF (I-1; a,a, a) = GF(l; a,a, a—1);
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THEORY OF THE PARTITIONS OF NUMBERS, 349

and also

GF(l; a")—a"GF (I-1;a") = GF(l; a*?, a—1).

The formation of the relation in any particular case presents no difficulty. When
the lattice has k singly detachable nodes, the right-hand side of the relation involves
2¥—1 terms. :

Art. 5. When the part magnitude is unrestricted, or / = oo, the equations become

(a+b+c)GF (= ; a,b,¢)
=GF(w;a-1,0,¢) +GF(w; a,b—1,¢)+GF (o ; a,b,c—1)
—~GF(w;a-1,b—1,¢)=-GF (0; a—1,b,¢—=1)—-GF (o ; a,b—1,c—1)
+GF (o ;a—1,0-1,¢c~—1)

(2a)GF (o ; ay, a, ..y @) = {1=(1=p) (1=p3) ... (L=p,)} GF (0 @y, ay, ..., @,)

and the modified forms are easily written down.
Art. 6. The next step is to deduce the corresponding relations between lattice
functions. From the relation

GF( o ; ctl) C12) reey a‘n) = IJ( ® ; al’ a2’ A a/n)

(1) (@) ... (3a)

B

We find

0 * — ,.a’+b’+c'_(1)(2)"°(a'+b+c) w:a b -
L(o;a,bc)=73w (1)(2)...(a’+b’+c’)L( ;U )

L(w;a,a0)=L(w;a,a—1);
L(ow;a,b)=L(w;a—=1,0)+L(w;ab-1)~(a+b—1)L(w;a—1,b—1);
L(w;a,a,0)= ©;a, a4 a—1);
L(ow;a,b,0)= w;a—1,0,0)+L(w;a,b,0—1)—(a+2b—1)L(o0;a—1,b,b—1);
L(»;a,b,¢)= w;a—1,0,¢)+L(w;a,b-1,¢)+L(w;a,b c—1)
—(a+b4e—1) {L(w;a—1,0—1,¢)+L(w;a~1,b,c—1)
+L(w;a,b=1,¢-1)}
+(a+b40—2) (atbtc—1) L (o ;a—1,b—1,c—1).

L(
L(w;a,a,0)=L(w;0,a—1,b)+L(w;a,a,0—1)—(2a+b—1)L(w;a, a—1,b—1);
L(
L (

In the case of n unequal rows, if we write symbolically,

PsL(oo; ay,am ooy a,) = Li(oos ay, ag, ..., =1, ..., ),

(Za') (Za-—'l) (Ea,_m_i_]_) = X"
then

(1-X)L(ow;a,a ..., a,) = (1—p,X) (1—=p:X) ...... (1=pX)L(oo; ay, ay, ..., @,).
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350 MAJOR P. A. MAcMAHON: MEMOIR ON THE

Art. 7. Continuing, for the present, to regard the part magnitude as unrestricted,
we now proceed to the equations satisfied by the inner lattice functions.
Guided by the relation
(1)...(2a)
(n)...(a;#+n—1).(n—1)...(a,+n—2)...
o (2) (a1 . (). (ay)

L(Oo;al’a%"',an): IL(OO;aha%"',a’n)y

we find
(2a) IL (0 0,a) = (a) IL (w; a,a—1);
(a+b)IL(>;a,b) = (a+1)IL(w; a—1,b)+(b) IL (w; a,b—1)
—(a4+1) (b)IL (o a—1,b~1);
(8a)IL(w; a,0,a) = (a)IL(w; a, @, a—1);
(2a+b)IL(o; @, 0,0) = (a4+1)IL(; a, a—1,0)+(b) IL(w; a, a, b—1)
—(a41) (b) IL(; @, a—1,b—1);
(a+2b)IL(; a,b,0) = (a+2) IL(o0; a—1,b,0)+(b) IL(o; a, b, b—1)
—(a+2) (b) IL(o; a—1,b,b—1);
(@+b+0)IL(oo; ¢, b, ¢) = (a+2) IL(o0; a—1, b, ¢)+(b+1) IL (o @, b—1, )
+(¢) IL (o0; @, b, c—1)
—(a42) (b4+1)IL (; a—1,0—1, ¢)—(a+2) (¢) IL (; a—1, b, c—1)
—(b+1)(¢) IL(oo; @, b—1, c—1)
+(a+42) (b4+1) (¢) IL( o0; a—1,b—1, c—1), '

and, in general, for n unequal rows, if we write symbolically,
@ 1L (5 oy, @, ...y @) = (ag+n—s) IL (o0 ;5 oy, ay, ..oy a—1, ..., @),
¥ IL (s ay, @y ooy @) = (1=q) (1—g2) ... (1—qu) IL (005 a4, @y, ..., a@,).

To these may be added

o a b o) = sgerve (8) . (@a+2).(2) ... (b+1).(1)... (c)
(o050, b, ) = 2 1 2) . () 1) (1) (&)

( 3 (I/, b,a C,)a

which can be readily generalized.

Art. 8. I proceed at once to find an expression for the inner lattice function.

It appears to be right to seek an expression of the function which shall show at
once that the sum of the coefficients therein is that which it is otherwise known to
be. Thus the result

IL (o ; ab) = ],+,7,~”+1(_a_‘lb_)

(1)

shows at once that the sum of the coefficients is a—b+ 1.
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THEORY OF THE PARTITIONS OF NUMBERS. 351
Since the sum of the coeflicients in IL( = ; a, b, ¢) is
(a—=b+1) (a—c+2) (b—c+1)

it was at first conjectured that the e'xpressio‘n might be

{1+nc”+41 @(-—I_S}L)} {1+90°+2 (a(2) )} {1+mc“ (b(l) )},

but this neither satisfies the functional equation nor verifies in simple particular
cases.
If, in the formula

IL (o ; a, b, c) ’
(8)...(a4+2).(2) ... (b+1).(1) ... (c)

we put IL (o ; a, b, c) equal to the expression above and then put ¢ = 0, we obtain
the known result for GF ( « ; @, b), as may be readily seen by putting the expression
in the form ‘

{H_a},ﬂ (a(l)b)} {(a+2()2-;w2 (c)} {(b—}-l()l;x (c)}

We are therefore justified in putting IL (o ; a, b, ¢) equal to the expression with
an added term which contains the factor (c).
Wrrite, therefore,

GF (> ;.a,b, )=

IL(o;a,b,c) = {1+w”“ (a.(_—l—)b_)} {1+x”+2 (a’(z) )} {1+(1;°“ (b(';)c)} +(c)F(o; a,b,ec).

By working out several particular cases I was led to the conjecture
F(w;a,b,¢)= ® ) {a**? (a—Db)—a*** (b—c)} ;

and I then found that the expression

{1+m”“(i——~)} {1+x°+2 a‘(z)c)} {1+m0“(b(1)°)} E_"l) {#** (a—b)—2*** (b—c)}

does, as a fact, satisfy the functional equation.
Art. 9. Having thus, beyond doubt, established the forms of IL (o ; a, b) and

IL (o a,b,c), I proceed to a study of the functional equations.
In the equation

(a4+Db)IL( o ; a,b)

= (a4+1)IL(0; a—1,b0)+(b) IL( 0; a,b—1)—(a+1) (D) IL(; a—1, b~1),
put
x{IL (o ; a,b)—(a+1)IL( o ; a—1,0)} = V,(»;a,b);
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352 MAJOR P. A. MACMAHON: MEMOIR ON THE
then
(a4Db) V,(; a, b) _
= (a+1) V,(;a—1,b)+(b) V(0 ; a,b—1)—(a+1) (b) V, (o; a—1,0-1),

which is of the same form as the original equation.
Hence, if IL (o ; a,b) be a solution of the equation,

™ {IL (o ; a,b)—(a+1) IL(w;a—1,0)}
1s also a solution.
I write

2 {IL (e ; a,b)—(a+1) IL(; a—1,b)} = O,IL (o ; a,b),
exhibiting the new solution as the result of the performance of a certain operation
upon the original one.
Again put, in the original equation,
™ {IL (o ; a,b)—(b)IL(w;a b—1)} = V,(w;a,b) = 0,IL(x; a,b),

and we find
(a+b) Vy(o; a,b)

= (a+1) Vo( o5 a—1,0)+(b) Vs( o ; a,b—1)—(a+1) (b) Vs (o ; a—1,b—1);

so that another solution is
: Vy(o;a,b)=0,IL(x;a,b).
T write further

OpIL (oo;a,b) =a ™ "{IL(w;a,b)—(a+1) 1L (w; a—1,b)
—(b)IL (o ; a, b—1)+(a+1) (b) IL (o ; a—1,b—1)};
so that, from the functional equation itself,
OupIL(oo;a,b)=1L(w;a,b);
Oab =1 >
and 1t is easy to verify that
0,0, = O,

Art. 10. Since we know one solution of the equation

b+1 —b
1+ (a(l) ),

or better still (a+1)—x (b), we may at once apply the operators O,, O, Operating
s—1 times successively with O,, I find

077 {(a+1)—z(b)} = (a+1)—a* (b);
0, {(a+1)—x(b)} = (a+1)—(b),
0,4 {(a+1)—z (b)} = (a+1)—z" (b).

or more conveniently (1)+a*** (a—Db),

and
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We may therefore take (a+1) and (b) as the two fundamental solutions, and clearly
we may always multiply a solution by any function of « which does not involve a or b.

The final expression of IL (o ; @, b) which I adopt is

(a+1), (b)

x , 1

IL (o ; a,b) =

and we will find that, expressed thus as the quotient of two determinants, it is
generalizable. I might now, knowing @ posterior: the expression for IL (o ; abe),
proceed in a simpler manner than what follows; but I think it better to put before
the reader the actual course that the investigation took.
Art. 11. In the functional equation satisfied by IL (e ;a, b, ¢), which may be
written
IL(o0;a,b,¢)—(b41)IL(ow; a,b—1,¢)—(c) IL( o; a, b, c—1)
+(b+1)(¢) IL(o; a,b—1,¢c—1)
= " IL(o; a,b,¢)+(a+2) {IL(w; a—1,0,¢)—(b+1) IL (w;a—1,0—1,¢)
—(e) IL(o0; a—1,b,c—1)+(b+1)(c) IL(o;a—1,0—1,c—1)},
1 write
Vi(w;a,bc)=a"{IL(w;a,b,c)—(b4+1)IL (o ;a b—1,c)
—(e)IL (o ; a,b,c—=1)+(b+1) (¢) IL (o ; a,b—1,c—1};

and ﬁhence derive the relation

(a+b4c) V, (> ;a,b,c)
= (a42) V, (oo ; a—1,0,¢)+(b4+1) V, (0 ; a,b—1,¢)+(c) V(o ; a, b, c—1)
—(a+2) (b+1) Vi (w;a—1,0—1,¢)—(a+2) (¢) Vi(x; a—1,b,¢—1)
—(b+1)(c) Vi (; a,0—1,c—1)+(a+2) (b+1)(c) V. (o0 ; a—1,0—1,¢—1).
Comparing this with the functional equation it is clear that V,( o ; a,0,¢), as
defined, is a solution.

Proceeding similarly we find six solutions which I exhibit as operations performed
upon IL (o ; a, b, ¢) as follows :—

™ {IL( ;b c)—(a+8)IL(w; a—1,0,¢)} = O,IL(x; a,b,c);
2 {IL(o; a,b,¢)—(b+1)IL (o ; a,b—1,¢)} = OIL (w; a,b,c);

a™ {IL(w;a,b,¢)— (¢) IL(o;a,b,¢—1)} =0IL(w;a,bc);
VOL. COXI.—A. 2 7
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354 MAJOR P. A. MacMAHON: MEMOIR ON THE
w7 {IL (o a,b,¢)—(b+1)IL (00 ; a,b—1,¢)—(c) IL( o ; a, b, c—1)
+(04+1) () IL (o a,0—1,¢=1)} = O,IL(o; a, b, c);
x " {IL (s a,b,¢)—(e)IL (0 ; a, b, c~1) —(a+42) IL(w; a—1,0b,¢)
+(¢) (@a4+2)IL (oo ; a—1,0,¢=1)} = O,IL (o ; a,b,c);
e IL (o ; a,b,¢)—(a42)IL( o ; a—1,b,¢)=(b+1)IL (o ; a,b—1,¢)
+(a+2) (b+1)IL(; a—1,b—1,¢)} = OylL( o ; a, b, c).

I further write
' OuelLi( 05 @, b, c)

=" {IL (o ; a,b,¢)—(a+28)IL (o ; a—1,b,¢)—(b+1) 1L (w0 ; a, b1, c)
—(e)IL (o0 a,b,c—1)+(a42)(b+1)IL (o ; a—1,b—1, )
+(a=+2) () IL (o ; a—1,0,c—1)+(b+1) (¢)TL (o ; a,b—1,c—1)
~(a+2) (b41) (¢) IL (oo ; a—1,b—1,¢c~1)};

and it is easy to establish the operator relations
0,0,0, =1,
0,0,=0,, 00,=0,, 0,0,=0,,
0,04 = 0,0,, = 0,0,, = Oy, = 1.

Art. 12. I now operate with these operators upon the known solution of the
functional equation. To clear it of fractions I multiply throughout by (1)*(2).
Operating m times in succession with O, I obtain the result

(1) = (2) (b-+1) —2* (a-+-1) + 22 (b) +a7*»* (a—D)
— " {(8) + 27 (1—) (a—b—1) —®** (2a—2b)} (c)
+x (1) 2" (a—D)} (¢—1) (c).
Whence T conclude that
P, = (1) =2 (2) (b 1) =2 (a+-1) +27*2 (b) + 2+ (a—D),
P, = {(2) +2** (1+) (a—b—1) —z”** (2a—3b)} (c),
P, = {(1)+2** (a=b)} (e—1) (0},

are solutions of the functional equation.
I find that A
op, =P, OP,=2"'P, O/P;,=a"P;;

but new solutions are obtained by operating upon Py, P,, and P; with O, and O,.
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Operating with O,, m times successively, upon P; T obtain
—w(e—1)(c) {(b+1)—2"" (a+2)},

and I draw the inference that

(¢c—1)(c)(b+1) and (c—1)(c)(a+2)
are solutions. '
Further, operating with O,, m times successively, upon P,, I obtain

(a+1) (a+2) (c) " — (b) (b+1) (c) ™" **;
and it thence appears that

(a+1) (a+2) (0) and (b) (b+1) (o)
are solutions. '
Again, operating with O,, m times successively, upon P;, I obtain

(a+41) (a+2) (b+1) — (b) (b+1) (a+42) 2™+ ;
and the conclusion is that

(a+1) (a+2) (b+1) and (b)(b+1)(a+2)
are solutions.

No other fundamental solutions are obtainable by operating with O, O,, and O,
upon P,, P,, and P;, and clearly we have no need to consider the other operators
because of the relations between them.

- We have thus six fundamental solutions

(a+1) (a42) (b+1), (a41)(a42)(c).  (b) (b+1) (o)

(b) (b+1) (a+2),  (e—1)(c) (a+2), (c—1)(c)(b+1).

Art. 13. The known solution of the functional eqﬁation from which these solutions
have been derived can now be expressed in terms of these. Since it has been found
that

0,7 (1)2(2)IL (o ; @, b, ¢) = Py—a™ ' Py+a ™2+ Py,
we have

(1)2(2)IL (o0 ; a, b, ¢) = P—aPy+ 2Py
and, putting m = 0 in results obtained above, it appears that
P, = (a+1) (a+2) (b-+1) —a (b) (b+1) (a+2),
P, = (a+1) (a-+2) (¢) =* (b) (b-+1) (),

P; = —x(c—1) (c) (b+1) + (c—1) (c) (a+2).
2z 2
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whence

(12(2) IL (3 @, b, ¢) = (a-+1) (a+2) (b+1)—2 (b) (b+1) (a+2)—2 (a+1) (a+2) (c)
+a* (b) (b+1) (c)+2® (c—1) (c) (a+2)—2* (c—1) (¢) (b+1),

or ‘
(a+1) (a+2), (b)(b+1), x=(c—1)(c) 1, 1, =
IL(; a,b,¢) = x(at+?2) , (b+1) , (c) = |lx 1, 1/,
a® , x 1 A |

a satisfactory representation of the inner lattice function.
Art. 14. Passing now to the consideration of the inner lattice function of the
order 4, viz., IL(  ; a, b, ¢, d), and guided by the above results, I put

A, = (a+3), A; = (a42) (a+3), A; = (a+1) (a+2) (a+3),
By = (b4+2),  By=(b+1)(b+2), By= (b) (b+1)(b+2) ,
C, = (e+1), C, = (c)(c+1) , Cy = (c—1)(c)(e+1) ,
D= @, D= @=D)@ , D= @=1)@-1(@)
and I consider the twenty-fouf products
A;B.C,, A,B,D,, A;D,C, D;B,C,,
AC,B, A,D,B,, AC.Dy, D,;C,B,,
B;AC,, B;A,D,, D;ALC,, B;D.C,,
B,C,A,, B,D,A,, DiCA,, BGoDy,
C,A,B,, D;A,B, C,A,D,, C,D,B,,
CyBA,, D;B,A,, C,D,A,, C;B,D;,
which, to suffices 3, 2, 1 in descending order, involve every permutation of the letters
ABCD, three at a time.

Art. 15. T shall show that each of these products is a solution of the functional
equation '

@ IL (s a,b,e,d) = (1—¢) (1—¢2) (1—¢5) (1—q) IL (0 a,b,¢,d);
for, looking at the definition of the symbol g, it is clear that
Q1A3B201 = (a')A-SB2OI: 92A3B201 = (b)A3B2Ch Q3A3Bzc1 = (C)A3B201> %AéBzCl = (d) A;B.C,,

17:A5B:C, = (a)(b)A;B,CL, 119:0545B,C, = (a)(b)(c)A;B.C,, &e.
Hence

(1=q1) (1=¢5) (1—gs) (1—q.) AsB,Cy
= {1=(@)} {1=(0)} {1=(0)} {1—(@)} A;B.C, = ¥ ABC,,

establishing that A;B,C, is a solution.
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In general, put
A0=B0=00=D0=1,

-

and consider the product A B,C,D; where A, B, C, D are in fixed alphabetical order
and a, B, y, § is some permutation of 8, 2, 1, 0.

We find
A BC\D; = (a—2+43) A B,C,D;,

and the effect of the symbols ¢;, ¢s ¢, is to multiply by (b— ﬁ+2), (c-—'y—}-l),

(d— 3) respectively. Hence
(1=q1) (1=g2) (1—gs5) (1 —q.) ABC,Ds ,
= {1-(a—@+3)} {1-(b—B+2)} {1~(c~Y+1)} {1-(d—0)} AB,C,D;,
= i et3th—Bt2to—y+t1+d—5 Aa.BBC'yDS’
— patbiod AaBﬁCyDS)
since

o+B+y+8 =1+2+3.

It is thus established that each of the products in question is a solution of the
functional equation.
Art. 16. Hence the determinant, which is a linear function of these products, viz. :—

(a+1) (a4+2) (a+8),  (B) (b+1) (b+2), @ (c—1) (o) (c+1), 2*(d—2) (@—1) (@)
0@+ 0+3) . DO+ . @), e@-1@ |
o (a+3) ,  w(b+2) (c+1) (d) ’

a® , x® , x , 1

and I shall show that this determinant, divided by the determinant

is the actual expression of IL (o ; a, b, ¢, d).
Art. 17. I first take the test of the sum of the coefficients which we know otherwise

to be
75 (a=b+1) (a—c+2) (a—d+3) (b—c+1) (b—d+2) (c—d+1).
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The denominator determinant has the value (1) (2)2 (3); dividing numerator and
denominator by (1)°, and then putting « equal to unity, we find

(a+1) (a+2) (a+3), b(+1)(d+2), (c—1)c(c+1), (d—2)(d—1)(d)
. (@+2)(a+3) , (b+1)(0+2), cle+1) (d-1)d
B a+3- , b+2 , c+1 , d ’
1 | , 1 , 1 , 1

and herein putting a—b+1, a—c+2, a—d+3, b—c+1, b—d+2, c—d+1 separately
equal to zero, we in each case find two columns becoming identical and the deter-
minant vanishing. Hence the sum of the coefficients has the proper numerical value.
Art, 18. As a second test I will show that the quotient of determinants becomes
unity on putting @ = b =c = d.
The numerator determinant becomes

(a+1) @+2) (a43), (2) (a+1) @+2) =(a—1) () (@+1), = (@—2)(a—1)(a)
x (a+2) (a+3) (a+1) (a+2) , (a) (a41) x(a—1) (a)
x* (a+3) , x(a+2) (a4+1) ) (a)
a® , x? ' ,. x , 1

Transform this by taking

For New First Row—
1** Row +a (1 +a+a%) x 2™ Row+a*" (1+x+a°) x 3" Row+a**?x 4* Row,

For New Second Row—

_ 2" Row +a* (1+a) x 3™ Row+ax**' x 4™ Row,

For New Third Row-— ”
3" Row 4+ x 4™ Row,

and 1t becomes

3

1, 1, @

x, 1, 1, =
3

@ w1, 1

af,  adb ow, 1

and thus the quotient of determinants is unity.
This verifies numerous particular cases.
Art. 19. A third test is to show that the quotient of determinants has the value

1 xt m2a wSa
when b=c=a, d=a—1. T

The proof is too long to find a place here.
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All of the processes employed above are obviously valid when applied to the

functional equation of order n and lead to the expression of 1L (o« ; ay, a,,

quotient of determinants.

iy Q) BS 8

Art. 20. Before proceeding further I collect together the chief results obtained
above.
(a+1), (b) Lo
IL (o0 ; @, 0) = -+ ;
x o, 1 ¢, 1
(a+1), (b) 1 1
(1) (2) ... (a+D) =
L(o;ab)= x , 1 x, 1 :
(5 a0) DIOBRCEDROIOO
(a+1), b [ 1, 1
GF (' a, b) = - z , 1 x, 1 :
(50 0) = oy @) 1) @) @) . ()
(a+1) (a+2), (b)(b+1), x(c—1)(c) L, 1, 1
IL(w;a,b,¢) = x(a+2) , (b4+1) , (c) = | x 1, 1|;
a? , @ , 1 2, x, 1
(a+1)(a+2), (b)(b+1), x(c—1)(c) L, 1, 1
xz(a+2) , (b+1) , (c) +lw 1, 1
x? , x 1 x®, 1

L(oos a,b,0) = (3)(4)...(a+2).(2)(3)...(b+1)-(1)(2)m(")

and, not putting the denominator determinant in evidence,
@+1) @+2), () (b+1), @(e—1) (0
c@t2) . 0D . ()

3 , ' 1

(1)(2)...(a+Db+c);

GF(w;a,b,c)=

(a+1) (a+2) (a+38), (b) (b+1) (b+2), «(ec—1)(c)(c+1),
x(a+2) (a+3) , (b+1)(b+2) , (c) (e+1)
x®(a+38) x(b+2) (c+1) ,

D659 ). 05 0.0

@’ (d—2) (d—1) ()
2 (d—1) (d)
(4)

1

GF (»; a,b,c,d) =

D 6F9). ). 0. @) 1. (1) -

@
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In general, the determinant numerator of GF ( o ; ay, @, ..., @,) involves & explicitly
as exhibited in the determinant

-1

1, 1, x 2 , 7(92)
§—2

x , 1, 1, €, , x(s2)
-3

m3 bl w 2 ]‘ b ]‘ bl b x(e2 )
» —4

%6 bl ag 3 aJ b ]' b bl I(éz )
A0 L) ) )y

the exponents of @ being ﬁgurafe numbers of order 3,

. ny 1
GF (o0 o) = () ... (a+n—2).(n—1)... (a+n—3) ...... @) . (a+1). (1) (a)

The Restriction on the Part Magnitude.

Art. 21. T pass on to consider the case in which the part magnitude is restricted by
the integer 1.
I take as my point of departure the functional equation

(1=p) (1=ps)...(L=p,) GF (L5 ay, s, ..., @) = 2 GF (I=1; oy, 0, ..., at,),
and, by means of the relation

GF (I; o, gy ..., 1) = L(l; ay, as, ..., )

(1) (2) ... (a)

convert it into a functional equation for the lattice function.
For the orders 2 and 3 we have

L{;ab)—a**L{l—1;a,b) |
= (a+b) {L(l; a—1,0)+L(; a,0—1)} —(a+b—1) (a+b) L (/; a—1,0—-1);

L (;a,b,c)—x*" L(l—1;a,b,c)
= (adb4e) {L(I; a=1,b,¢)+L(l; a b—1,c)+L(l; a, b, c—1)}
—(a+b+e—1)(a+b+e){L({; a—1,b—1,¢)+L({l; a—1,b,c—=1)+ L(l; a,b—1,c—1)}

+(a+b-+c—2) (é.+b+c—1) (a+b4c)L(l; a—1,0—1,¢c—1);
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and in general
(1=pX) (1=p:X) ... 1=pX) L (5 any g, .oy @) = > L(l—=1; oy, O, ..., @) 5

wherein p is the symbol of Art. 3, and symbolically

X" = (Ja) (Za—1) ... (Ja—m+1).
Art. 22. Also, from the relation |
L(;a,a,, ..., a,)

(I—l—n)...(I—}-a,l—l—léll—l).(I+n—)1)...(I Do (iba)
woo(l4ag+n—2)...... +1)...(I4a, .
= (1)(2)-.(%a) @) (aFn—1). (n—1)...(agFn—2).....(1)..(a,) L5,

ey (),

for the orders 2 and 3 we have

(I4+a+1)((+b) IL({; a,b)—(a+1)(14+Db) IL(; a—1,0)—(I4a-+1)(b) IL(/; o, b—1)

+(a+1) M) IL (0 a—1,b—1) =« ([) 141) IL(I—1; a, b);
(I+a+2) ((4+b+1) (I4c) IL(/; «, b, ¢)
—(a42) (14+b4+1) 14+e) IL(; a—1,b, ¢)—(14a+2) (b+1) (I+e) IL(I; a,b—1,¢)
—(I4+a-+2) (I+b+1) (c) IL(Z; , b, c—1)

+(a+2) (b+1) (I4c) IL (l; a—1,b-1,¢)+(a+2) (I4+b+1) (c) IL(/; 6—1, b, c—1)
+(I4+a+2) (b+1)(c) IL(/; @, b—1,c—1)—(a42) (b+1) (c) IL (; a—1,b—1,¢—1)

= () (141) ((+2) IL (-1 a, b, ¢).
While in general, if », be a symbol such that

(a’s"'n—'s)
(I+a,+n—s) L

r IL(L; oy, g, ..., ) = (5 gy oy ag—1, .00, ay),

(+a,+n—1) I4a,4+n—2)...(I+a,) (1—r) (1—r)...(1—n,) IL(l; o, ay, ..., a,)
=a* () I+1)...(4+n—1) IL(I—-1; a1, a,, ..., a,).
Art. 28. T propose to obtain solutions of these functional equations. In order to

ascertain the form of the required solutions it was necessary to examine several
particular cases appertaining to the order 2 ; the result was the conjecture that

o) = (42 (43) . (Hat1) . (1) (142) . (I4b) [ (a=b) (D)
GF (5 a,0) ® (@) @+1). (1) @)...) U e D)

VOL. CCXI.—A. 3 A
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This expression was found to satisfy the functional equation, so that certainly

IL(; a,b) = 1+90”“_<_3':;M__ .

(1) (+a+1)°
and then, observing that we may write
| | (a+1).  (b)
IL(Z;OL,Z)):—I——[———— ,
Wt | 2, (41)

and remembering the nature of solution when [/ = oo, it became clear that we should
seek solutions for the order 2 of the forms

(a-+1) (b) .
(I4+a-+1) i (I+a+1) s

where I, is a function of / to be determined in each case.

I therefore substitute (lgl?:—ll—)l—) F, for 1L (/; @, b) in the functional equation and
arrive at the relation
OF, = (+1)F,y;
from which I deduce
Fl == (I_I" 1)’
yielding for me the fundamental solution
(a-+1) (1+1)
(I+a41)
Similarly I find that another fundamental solution is
OO
(I4+a-+1)

and, in terms of these two solutions, I find

= L [@t+)(+1) (b)) }
IL(5 0, b) = 754 —a .
Gl =1 trar)  “TatD)
Art. 24. This simple exposition for the second order clearly points out the path of
investigation for the third order. For, guided by the six fundamental solutions
when [ = oo, it is natural to seek for solutions of the functional equation of the six

types

(a+1)(a+2) (b+1)F, | (a+1)(a+2) (c) I, .

(I4+a—+1) (I4+a+2) (I4+b+1)° (I+a+1)(I4+a+2) (14+b41) ’

(b) (b+1) (a+2)F, (c—=1)(c)(a+2)F,

(I+a—+1) ((4+a+2) (+b+1)° (I4a—+1) (I4+a-+2) (4+b+41)°
(b) (b+1) () F, (c—1) (¢) (b+1) F,

(Fat+1) (+a+2) (+b+1)°  (tat1)(+a+2) (+b+1)’

where I, is a function of [ to be determined in each case.
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Substituting the first of these for IL(l; @, b, ¢) in the functional equation of
order 3 I find

F,= D2y,

(1)?
but the solution of the equation
Fl = ¢1Fz—1
is clearly
Fl = ¢z¢)z—1¢z~z

so that, in the present case,

_ D +2) (HI+1) (=)0 2 :
F, = ([)z . (I——l)z : (I-f2)2 e T (H'l) (I+2),

so that I obtain a fundamental solution

(a+1)(a+2) (b+1) (I+1)* (14-2)
(Fat1) ((+at2) (IFbr1)

Art. 25. Similarly T arrive at five other fundamental solutions,

(a+1) (a+2) (c) (1) (14-1) (14-2)
(I4-a+1) (I4-a+2) ((4+b-+1) ’

(b) (b+1) (a+2) (1) 1+1) (1+2)
(IHa+1) (+a+2) (+b-+1) °

(c=1) () (a+2) (* (1+1)
(I+a+1) (I4+a+2) (I+b+1)’
(

)
(b) (b+1) (¢) (1—=1) (1) (14-2)
(I4a+1) ((+a+2) (I+b+1)°

(¢=1)(c) (b+1) (I=1) (1) ((+1) .
(I+a+1) (I4+a+2) (+b+1) ’

and I next seek, guided by previous work, to construct the function IL(!; a, b, ¢) by
a linear function of these six solutions. :
It is natural to write

(a41) (a+2) (b+1) (1+1)2 (14+2) —z (b) (b+1) (a+2) () (14-1) (14-2)
-z (a+41) (a+2) (c) (1) (14+1) (I+2) +a* (e —1) (c) (a42) (1) (I41)
+a* (b) (b+1) (¢) (1=1) (1) (I4-2) —z* (¢--1) (¢) (b41) (1—1) (1) (I41),

with a denominator

(1)2(2) ((+a+1) ((+a+2) (-+b4-1),
3 A2


http://rsta.royalsocietypublishing.org/

A

/

e

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/,

2\

y
S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

364 MAJOR P. A. MacMAHON: MEMOIR ON THE
which, in determinant form, is
@+1)@+2).  B)b+1) . @ (c—1)()
2@, GHDEH), @042
SN, e+, H)42)

divided b '
g (1)2(2) (I4+a+1) (I4+a+2) (I4+b+1);

and it will be shown that it is, in fact, the expression of IL(/; a, b, ¢).
Art. 26. In a general manner we may take the following view-—
Recalling a previous notation for the order 3

A, = (a+1) (a+2), A1=(a+2); By = (b) (b+1), B, =(b+1), C,=(c—1)(c)
=), Ay=B=0C=1;

and taking a product
A,B,C,,

where p, ¢, » denotes some permutation of the numbers 2, 1, 0, suppose

AB,C,E,
(IFa+1) (+a+2) (+b+1)

substituted for IL (! ; a, b, ¢) is the functional equation. The result on reduction is

_ D +)
' (=24p) (I—1+q) ((4r) T

and now writing

Ui (1—1) (1—2) ad mf, =
(i=259) (—3+p) (—dgp "= s

(- 0 (i—1) ad inf. =
(I—=14q) ((—2+q) (—38+q) Lonf. = duy

(+2) _(+1) () i g
(I41) " (I=1+r) ((—2+41) " d inf. = o

Fl = ¢apql)bq¢cr;

and the inner lattice function IL (/; «a, b, ¢) is, to a divisor

(1) (2) (14-a+1) (I4+a-+2) (14+b+1)
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THEORY OF THE PARTITIONS OF NUMBERS. 365
pres, equal to the determinant
Aspo s, Bao, 2Cudes
wAiba, Bibu, Cida |,
Ao, By,  Codu
and this determinant is clearly
A, , B, , xC,
zA, (1), B (I41) , C, (142)
A, (1—=1) (1), B, (I) 141), G, (I41) (142)

Art. 27. This is evidently a perfectly general process and suffices to establish that
a solution of the functional equation of order n is a determinant of order n of which
the constituent in the s row and #" column is

2 U (ads—t41) . (adn—t) . (—s4t41) ... (I+t—1);
and when this determinant is divided by
Ay=(2)...(a+1)(I+a+1)...(+a+n—1).(I4-a,+1)...(HFa,+n—2)...((+a, ;+1),
we have, as will be proved, the expression of
IL (15, g, -.os ).

Art. 28. To establish this we may apply a series of tests.
Thus, take the expression of IL (; a, , ¢, d)

(a+1)(@+2)(@+3),  (B) (b+1) (b+2) . @(e=1)(0) (c+1), @'(@d—2)[@A=1)()
(1) (@+2) (@+8), (+1)E+1)(b+2),  (42)(0) (c+1) , = (+3)(@—1) @)
PA=1)()(a+3), @O (+1)(0+2), (FD0+2)eHD).  (42) (1+3)()
21=2) (=) (1), #0=1)O0+1), @O+ +2), (+1)+2)(+3)
divided by |

(10 (2)% 3) (I+a-+1) (I+a-+2) ((+a+3) (+b+1) (1+b+2) (I+e+1).

It clearly reduces to IL (o ; @, b, ¢, d) when [ is put equal to .
Moreover, it can be shown.that when d = ¢ = b = a, the determinant involves
! and @ always in the combination /+a; for consider the determinant in question

when [/ is put equal to —a.
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0 “ 0 COMatd 0 (e)@) (@)=
0 “ 0 <0 © (e) (@) (1)

pug em {(g=®
ind uety pue v—d = 7 UBILYY 9N J D -+) JO UOTPOUN] ® SI QOS@SSSS IOpUN JUBUINIOND Oy} 90wef] (v—)P+(»)P+y
TWIOJ O} JO 40U A[Ie[o SI 1 QOUIS [[B 4B © JO UOOUNJ ® J0U SI uolssordxa 9y} je} MOUS 0} $90IyNs SIY] ¢ pagueyoun st 41
e[} SMOI PUB SUWN[0D JO UOISIATP pue worgeordinu £q SUOIJEWIOSURI} MOJ © I09Je PUY oM ‘v 0] »— Suygnd ‘mou pue

(1—%)(g—%)(e—%) < (o)(1—%)(z—%) * (1+e)(e)(1—®) * (z+%)(1+%) (%)
(e)(3—%) (e—¥) (1+¥)(1—%)(s—%) * (+e)(e)(1—2%) * (e+%)(1+e)(¥)
() (1—e)(e—®) * (1+%)(e)(g—®) “(z+%)(1+¥)(1—e) ° (g+e)(z+e)(¥)
() (1—®)(z—®) * (1+e)(e)(1—%) ° (z+e)(1+e)(e) ‘(e+%)(z-+%)(1+%)

uoyjtim oq Lewt 41 (), w— = (s—) oours pue

(e+e—)(g+e—)(1+e—) (gt+e—)(1+e—)(e—)z (1t+e—)(E—)(1—e—)x (e—)(1—e—)(@E—2—)2
(e) (4+e—)(g+e—)  (1+7®) (g+e—) (1+e—) ° (z+e)(1te—)(e—)z * (e+%¥)(e—)(1—e—)&
(e) (1—®)(et+e—)=z ¢ (1+e)(e)(g+e—)  ° (g+e)(1+e)(1+e—) * (e+¥)(z+®)(e—)=
(e) (1—) (3—%) © (14 (e) (1—e) (gt (1+%)(e) © (g+%) (347 (1+%)

29—01

ST A1

4
|
d

ALIIOOS g\ oiovsnval

q<>Od dH L 1vDIHdOSOTIHd

ALIIDOS gyorovsnvaL

Y TVAOY dH.L 1vDIHJOSOTIHd



http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

THEORY OF THE PARTITIONS OF NUMBERS.

- 367

‘1290 991nb Suteq uoryewnIo] Jo M®[ 9y} ‘YIOf OS pue

(e4+1 (g+1) (1+1) @+t W= “E+D O GT-Dex O G @G-
® (e+) 6+ (49 @+H) 1+) * GH) G+ WMz < (8+%) (1) (1=) ¢

@ 1—D) E+)z © 1+9)0) E+H) (@t 1+ (1+) © (8+9) (g+e) (1)@

@) (1—p) (3=p) ez ‘(1+2)(0) (1=0)z * (g+9) (1+a) (1) “(e+%) (3+%) (1+%)

(@) (1) @) (1) (1490 (1) @+D (1) 8+ (1) (@D (1) (e+®) (1) (gD (1)
(e+1) (1) (e+1) (1) (a+1) (1) (e+1) (1) B

(poqi)an
(e Gte (@ (gte) (s
() (1H) (rtet) (g +) (3t (e+1)
(1) IO

GEH)(+) Mz 0 a=1e
| @@ i) © Eroee | RO D) fete) A EED T

O)(1—=o)z < (1+9 @ ‘(g+®) (1+®)

(2g9m €7) 4D

(e . (4e(e)
“Ce+1) () (e (@)

(@) ao
. (1+1) < 0= Aav (1) Qv (1) (142 = (1) (1+1) = (1) _
| @ | @O D)
Ss . Nv 4o *SJ[ISOI 9] SWINSOI MOU Aew o M 63 WY

‘Aqrun st
UOIjOUNJ 901})B] JIOUUI SY} POUIURXS WA SARY JBY} SINGEU SIY} JO SOSEBO Iv[nomjaed [[e Ul 9SNBI9( UOIJEOYLIOA ® ST SIY],

N ALIIDOS g ousvenvar WV AALLOS shousvsnva

vV TVAOY 9H L IvDIHJOSOTIHd VYV 1TVAOY TH L 1VDIHdOSOTIHd



http://rsta.royalsocietypublishing.org/

\

A\
A
A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

.
/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

368 MAJOR P. A. MAcMAHON: MEMOIR ON THE

Tt is a remarkable fact that this elegant result appears to be valid whatsoever the
equalities may be that present themselves between the integers a, b, ¢, d,.... The
discussion of this and the interpretation of GF (l; a,b,¢,d, ...) when a,0b,¢,d, ...,
are not in descending order must be deferred to another occasion.

I add the general result for equal rows which has now been established

GF (I; a")
_ (4n) ... (+a+n—1) (I+n—1)... (I+a+n—2) (I+1)... (I+a)
~ (n)...(a+n—-1) (n—1)...(a4n—2) 7 (1)...(a)

Art. 30. T recall that, in Part V., the formula was given
GF (15 a,b,¢,d,...) = LGF (I; Sa)+L,GF (I—1; Sa)+ ...+ LGF (I—p; 2a),

wherein I, is the sub-lattice function of order s derived from the lattice whose
specification is (abed...). So far it has not been feasible to directly determine an
expression for L,, but as we now know the expression for GF ({; a,0,¢,d,...) it is
possible to find expressions for L, Ly, Ly, ..., by giving ! the values 1,2,3, ..., in
succession in the resulting identity. One interesting result was, however, directly
determined, viz. :—

L (0 5 a0, D)

_ (a,——s-|—1)...(a,—-1).(b-—s+1)...(b) ) b=t (D) (8)
=T D)y (Hemer @b )

but 1 do not give the proof of it at present, as the subject of the sub-lattice functions
has not yet been worked out, and they are, in fact, no longer necessary for this part
of the general investigation.

Art. 31. Valuable information, concerning line or one-dimensional partitions, is
furnished by putting 7 = 1 in the general formula.

The partitions that are then enumerated are those in which every part is unity,
there being not more than «, units in the s row; if thence we proceed to line
partitions by adding the units that appear in each row we clearly get a system of
line partitions such that the s part is limited in magnitude by the integer a,; or
the system comprises all partitions contained in or subordinate to (&, as, ..., @,), Viz.,
such that the first part 3 a,, the second * a,, ..., the n'™ » a,.

Denoting the generating function of these by

GF (a4, 0y, ..., a,; 1),

and, denotin 1) (2) ... (p) or ) N
& denoting @y ). (1) @) o (pmg) Y O See T
GF (a, 2); = @i'_l_) (@+1). (b) ;
110 N I
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(a+1), (b)(b+1), x(c—1)(c) |

GF (a,b,¢;8) = (-1()—0(‘42:)—1(—)3—) x , Xu(b41), X (c) ‘ ;

0 , x , X
GF (a,b,¢,d; 4)
(a+1), (b) (b+1), «(c—=1)(c)(c+1), 2*(d—2)(d—1)(d)
g | 7 Xal) Xa@@4) L oXa@-D@ |
W@ o, s Xl X, (d) ’

0 o, @ , - X
GF (a,b, ¢, d, c; 5)
(a+1), (b) (b+1), @ (c—1)(0) (c+1), o*(@—2)(d—1) (@) (+1), 2*(e~—83) (e—2) (e—1) (¢)
e, Xa(b+1),  Xa(e)(e+1) ,  2Xu(@=1)(@)(@+1) , Xy (e—2)(e—1)(e)

‘_%.5)3 (U x o, X (e+1), Xz (d) (d+1) , 2 Xy, (e—1) (e)
o0 , 0o x , X(d+1) , Xss ()
0 ’ 0 ’ 0 ’ w | ) X54

and the law is evident.

Art. 32. In general, supposing the lattice to be in the plane of wxy, that of the
paper and the axis of z perpendicular to the plane of the paper, if we project the
partition on to the plane of yz, we obtain a partition at the nodes of a lattice of [
rows in which the part magnitude in the s™ columns is limited by the number a,.

The general formula for GF (7; ay, as, ..., a,) is remarkable from the fact that

GF(Z; Ay, Ugy ouuy OLn) = GF (l; b], bg, ciey bm):

where (ay, dg, ..., a,), (b, bs, ..., b,) are any two conjugate line partitions.

Adumbration of the Three-dimensional Theory. 0% <,

Art. 33. 1 conclude this Part by pointing out a path “j/ (22
of future investigation into the Theory of Partitions
mn space of three dimensions.

I consider a complete or incomplete lattice in 8 5
three dimensions, the lines of the lattice being in 7
the direction of three rectangular axes of =, y, 2z % =

respectively. Just as an incomplete lattice in two dimensions is defined by a one-
VOL, CCXL.—A. 3 B
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dimensional partition whose successive parts specify the successive rows of the lattice,
so an incomplete lattice in three dimensions is defined by a two-dimensional partition
whose successive rows specify the successive layers of the lattice.

I shall suppose these layers to be in or parallel to the plane of xy which is the
plane of the paper, and the axis of z to be perpendicular to the plane of the paper.
Descending order of magnitude of parts placed at the points of the lattice is to be
in evidence in the three directions Oz, Oy, Oz

Art. 34. Consider the simplest case of a complete lattice, the points forming the
summits of a cube. The two-dimensional lattices o;2,8,8,, 28,85 in and parallel
to the plane of the paper are superposed to form the three-dimensional lattice,

Suppose that the first 8 integers are placed at the

<] & . . .
2z  points of the lattice so that descending order of
p 3 magnitude is in evidence in the directions Oz, Oy, Oz,
7 e.g., one of 48 such arrangements is as shown.

I associate with the first and second rows of the first
layer the letters a,, B, respectively, and with the first
and second rows of the second layer the letters a, B,

S

y respectively, and then from the illustrated arrange-

ment of the first 8 numbers I derive a Greek-letter
succession in the following manner :——I take the numbers in descending order of
magnitude and write down the Greek letter with which the position of each number
is associated : thus the arrangement above gives

@

7

87654321
“10‘2“161:820‘231/82-

Art. 85. In this Greek-letter succession we have to note

(i.) A B which is succeeded by an «,
(i) An « which is succeeded by an « with a smaller suffix,

(iii.) A B which is succeeded by a 8 with a smaller suffix.

If a letter which is thus noted is the s™ letter in the permutation I associate with
the permutation the power *, and taking the sum of these powers in respect of the
whole of the permutations associated with and derived from the lattice I obtain the

lattice function
S
- 3

and, following the reasoning of Part V., Art. 6, I derive the generating function for
partitions at the points of the lattice, the part magnitude being unrestricted, viz.,

GF (o0;22;92) = — >0 _ Lo 22; 29)

1)(@®)...8)  (1)(@)...(8) -
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Similarly, from the Greek-letter successions which involve ¢ noted letters, I derive
the sub-lattice function of order ¢, and thence, by previous reasoning, arrive at the
generating function when the part magnitude is restricted by the integer /,

GF(I; 22; 29) = 2lu(0:22; 22) (1=t 1) ((—t+2) .. (—b+8)

BIOENC)

Art. 86. The method is generally applicable to any incomplete lattice in three
dimensions. I work out in detail the case in which the points of the lattice form the
8 summits of a cube, in order to show that the result obtained, in Part II., Section 7,
in quite a different manner, is verified. That result, with modified notation, was

Generating Function

() e (18) gy (7)o (=1) .. (6)
=W T LE TN T ) )

T ([—2> cee (I+5) .’,U16 (1_3) see (I+4) .

RO TE T me e

P () = 2a®+ 22+ 3a* + 20 + 24",

where

Q () = 2°+3x°+ 42" + 8a°+ 4o’ + 3 + &,
R (x) = 22"+ 22" + 32" + 22" + 22™.
I shall now show that
1, P(x), Q(x), R(x), 2«

are, in fact, the sub-lattice functions of orders 0 to 4 which appertain to the lattice
formed by the summits of a cube. : N

I write down the 48 permutations of the Greek letters and over each the arrange-
ment of the first 8 integers from which it is derived, the lower layer of numbers
being placed to the left :— '
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87 65

43 21 ’
0‘10‘1“20‘2'8161,8262 s

86 75

43 21 ’
0‘10‘2‘ 0103181855,

86 b4

73 21 ’
“1)81 l 0‘1“20‘2,8152/8%

87 54

63 21 ’
0‘10‘1:81 ‘ 0‘2“2;31:8218%

85 74

63 21 ’
O‘10‘2'81 l 0‘10‘2/8162827

87 64

53 21 ’
0104 0‘2:81 | 0‘2)816232;

87 43

65 21 ’
0‘10‘1,81,81 l 0‘20‘2:32,82,

84 73

62 51 ’
“1“2/81:82 I “1“2316%

87 63

54 21 ’
0‘10‘10‘2181,81 I azﬂzﬁz;

87 63

52 41
o 0‘10‘2;81;82 i 0‘2:8162,

87 65

42 31 ’
0‘10‘10‘2“261,32 | 131:82,

87 62

54 381 ’

o0,053,8: B l otfBs,

85 64

73 21 ’
oy l Oty [ 0‘10‘231/82;82;

86 74

53 21 ’
00ty [ 0‘1,31 [ 0‘2,81/32/82>

86 43

75 21 ’
o l e | a2°‘262182,

84 63

72 51 ’
0‘1/81 l 0‘232 l 0‘1“2;31;827

86 73

54 21 ’
®2q0%y l 0‘1;81431 I 0‘2:32/82,

86 73

52 41 ’
010y [ BB [ a2:8182,

86 53

74 21 ’
0‘131 l “10‘2181 ’ “2/8232’

86 53

72 41 ’
0‘1181 I 0‘10‘2:82 1 0‘2/81;32;

87 53

64 21 ’
0‘10‘1181 l “2/81 | 0‘2:82;82a

87 53

62 41 ’
0‘1“1,81 i 0‘232 ] 0‘2/81:82a

86 75

42 31 ’
00l | 0‘1“23132 l 181/82,

86 72

54 31 ’

010ty [ 0‘1/81.31/82 I 0'-2:82,

Downloaded from rsta.royalsocietypublishing.org
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85 73

64 21 ’
0‘1“2;81 ! 0‘1/81 l 0‘2/8282,

85 73

62 41
0‘10‘2;81 l 0‘152 [ 0‘2}8132»

86 54

72 31 ’

/81827

o ‘ oty 5003,

86 52

74 81 ’

0‘1/81 ' 0‘1“2/81/82 ‘ 0‘2/625

87 54

62 31 ’
0‘1“1/81 l “2“232 ’ :8132:

87 52

64 31 ’
0‘10‘1/81 ] a218162l “262>

85 74

62 31 ’
03 I 010535 ] :81}8%

85 72

64 31 ’
0‘1“2181 l 0‘1,81/82 I 0‘-232,

87 64

52 31 ’
0‘1“1“2,81 ] 0‘2/62 l 31182.;

57 42

65 31 ’
“10‘1/81/81 I %53 l 535,

84 72

63 51 ’
0‘1012,81,82 i “1/81 l “232;

87 62

53 41 ’

0‘10‘1“2,81132 ] :81 | “2ﬁ2,

B

85 63

74 21 ’

051,81 ‘ Oty l o l “2/82;82’
35 63

72 41 ’

%181 l a2| 0‘1182 | 0‘2:813&
85 64

72 31 ’

“1:81 l Oy | “1“2:82 ’ :81/82;
85 62

74 31 ’

0‘161 [ 0‘2} 0‘1/81/82 [ 0‘2;82;
86 74

52 381 ’

0y 0ty I “1,'81 l 0‘2182 I /81,82;
86 42

75 31 ’

0‘1/81 l 0‘1/81 1 0‘2/82 } 503,
84 62
73 51

“1:81 l 0‘2182 ] “1/81 J 0‘2/62:
86 72

53 41 ’

010y l 0‘1/81:82 l B l a262>
86 52

73 41 ’

“1:31 l 0‘10‘2/82 i ﬂx ] 0‘232»
87 52

63 41 ’

0‘10‘131 l “2/82 l /81 I 0‘2132;
85 72

63 41 ’

“1“2181 | o3, l B I o3z
85 62

73 41 ’

(X'IBI I 0‘21 0‘1,82 | Bl ! a2,82.
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A dividing line has been placed after each letter that has to be noted.
the rules given,

Ly (o ; 225 22) =1,
Ly (o0 ; 22; 22) = 22"+ 22+ 32 + 22" + 22°,
Ly (o0 22; 22) = a®+ 3’ + 427+ 8a® + 4a® + 32 + 2,
Ly (o0 225 22) = 200+ 20" + 3™+ 20" + 2™,
Ly (o 22; 22) = &',
supplying a complete verification of the work in Part IL

We have, therefore,
GF (1; 22; 22)

(D) (48) L () (7)1 (1=1)... (14+6)
=L e o e T m e

Thence, by

o1, (=2 (145) p (1=3) . (144)

(1)...(8)

We have evidently, potentially, the complete solution of the problem of three-
dimensional partition, and it remains to work it out and bring it to the same

completeness as has been secured in this Part for the problem in two dimensions.

This will form the subject of Part VIL of this Memoir.
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